antiplatelet, antihypertensive, antiarrhythmic, and triglyceride-lowering effects.6 There is ongoing interest in the identification of novel mechanisms of cardiovascular benefit from omega-3 fatty acids. Telomeres are tandem repeat DNA sequences (TTAGGG)n that form a protective cap at the ends of eukaryotic chromosomes.7 During somatic cell division, DNA polymerase cannot fully replicate the 3 end of linear DNA, resulting in an obligate and progressive loss of telomeric repeats. This process may eventually result in cellular senescence or apoptosis.8 These observations have led to telomere length emerging as a novel marker of biological age, which integrates the cumulative lifetime burden of genetic factors and environmental stressors independent of chronological age.9 Moreover, a robust association between short telomeres and cardiovascular morbidity and mortality has been documented in several populations.10-12 Little is known concerning the dynamic regulation of telomere length over time, although it has recently become apparent that telomeres may lengthen as well as shorten.13,14 Given the cardioprotective effects of omega-3 fatty acids, we sought to determine whether omega-3 fatty acid levels were associated with changes in leukocyte telomere length over 5 years in a prospective cohort study of outpatients with coronary artery disease.

MULTIPLE EPIDEMIOLOGIC studies, including several large randomized controlled trials, have demonstrated higher survival rates among individuals with high dietary intake of marine omega-3 fatty acids and established cardiovascular disease.1-4 On this basis, the American Heart Association recommends increased oily fish intake and the use of omega-3 fatty acid supplements for the primary and secondary prevention of coronary heart disease.5 The mechanisms underlying this protective effect are poorly understood but are thought to include anti-inflammatory,
Acciones: E-mail | Link Directo |